

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SECOND SEMESTER EXAMINATION, 2017/2018 ACADEMIC SESSION

COURSE TITLE: NUMERICAL METHODS

COURSE CODE: EEE 312

EXAMINATION DATE: 9TH AUGUST, 2018

COURSE LECTURER: DR R. O. Alli-Oke

HOD's SIGNATURE

TIME ALLOWED: 3 HOURS

INSTRUCTIONS:

- 1. ANSWER QUESTION 1 AND ANY OTHER FOUR QUESTIONS (TOTAL OF 5 QUESTIONS)
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE **NOT** ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.
- 4. DO NOT TURN OVER YOUR EXAMINATION PAPER UNTIL YOU HAVE ASKED TO DO SO BY THE INVIGILATOR.

QUESTION #1

a) Consider the following system of linear equations, Ax = b, where x is the vector of unknown variables and x, b, A are of appropriate dimensions. The Gauss-Seidel method implements the strategy of always using the latest available update of a particular variable x_i . Show that

$$x^{k+1} = -(D + L)^{-1}Ux^k + (D + L)^{-1}bx^k$$

where D, L, and U denote the diagonal, lower-triangular, and upper-triangular matrix respectively. Explain why the Gauss-Seidel method is not suitable for parallel computation.

b) Given the data in Table 1, where $f_i = f(x_i)$

Table 1: Interpolation Data

x_i	<i>x</i> ₁	x_2	*** ***	 x_n
f_i	f_1	f_2		 f_n

The Newton basis is given by $N_1(x) = 1$, $N_2(x) = x - x_1$, $N_3(x) = (x - x_1)(x - x_2)$,, $N_n(x) = \prod_{j=1}^{n-1} (x - x_j)$. Suppose the Newton basis can compute a polynomial $p(x) = \sum_{i=1}^{n} a_i N_i(x)$ of degree at most n-1 such that

$$p(x) = f_i, i = 1, \dots n.$$

i) Show that,

[4 Marks]

$$a_2 = \frac{f_2 - a_1}{x_2 - x_1}$$

$$\vdots$$

$$a_n = \frac{f_n - \sum_{i=1}^{n-1} a_i \prod_{j=1}^{i-1} (x_n - x_j)}{\prod_{j=1}^{n-1} (x_n - x_j)}$$

ii) From the result obtained in (i), write the expression for a_4 .

[2 Marks]

c) Given a polynomial P(x) of degree n as follows

$$P(x) = a_{n+1}x^n + a_nx^{n-1} + \dots + a_{k+1}x^k + \dots + a_3x^2 + a_2x^3 + a_3x^3 + a$$

It follows that P(x) can be expressed as $P(x) = ((x^2 - rx - s)Q(x)) + R(x)$, where the remainder R(x) is a binomial of degree 1, $b_2(x-r) + b_1$; the quotient Q(x) is a polynomial of degree n-2, $b_{n+1}x^{n-2} + b_nx^{n-3} + \cdots + b_$

$$\begin{aligned} b_{n+1} &= a_{n+1} \,, \\ b_n &= a_n + r b_{n+1} \,, \\ b_{k+1} &= a_{k+1} + r b_{k+2} + s b_{k+3} &\text{for } k = n-2, n-3, \dots \, 2, 1, 0 \end{aligned}$$

Use well-labelled diagrams to geometrically describe the quadrature rules: trapezoidal rule: $I \approx \frac{b-a}{2} [f(b) + f(a)]$; rectangular rules $I \approx (b-a)f(a)$, $I \approx (b-a)f(b)$; midpoint rule $I \approx (b-a)f(\frac{a+b}{2})$. Hint: Superimpose all diagrams in a single figure and state in no more than two sentences how each rule relates with the respective diagram. [2 Marks]

QUESTION #2

a) Define the interpolation problem.

[5 Marks]

b) Using Lagrange Basis, determine an approximate function,

[5 Marks]

$$p(x) = \sum_{i=1}^{n} a_i L_i(x) = \sum_{i=1}^{n} a_i \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j},$$

that interpolates the following data points,

QUESTION #3

- a) With the aid of diagrams, clearly compare and contrast between the following numerical methods: Bisection Method, Newton-Raphson method, Regula-Falsi Method, and Secant Method.

 [4 Marks]
- b) Suppose that matrix A can be reduced to row-echelon form using Naïve Gaussian elimination. Show that matrix A has a unique LU decomposition given by,

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ l_{21} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{pmatrix}$$

where l_{21} is the multiplier in Naïve Gaussian elimination process and U is the row-echelon form of matrix A.

[6 Marks]

QUESTION #4

- a) Briefly explain a relative advantage of using the Newton basis over the basic Lagrange basis in constructing an interpolating polynomial. Hint: The respective bases are given in question #1 and #2 respectively.
 [4 Marks]
- b) The line y = 3x intersects the curve $y = -\ln x + e^x$ at point $x = \alpha$. Use Newton-Raphson method to determine approximate value of α . Let the initial approximate be $x_1 = 2.0$. Clearly show your workings for only the first iteration and clearly state the combined stopping conditions used in your solution. Take error tolerances of 0.05. [6 Marks]

QUESTION #5

a) Clearly explain two reasons why algebraic polynomials are particularly useful for approximating functions.b)

[2 Marks]

i) Using geometry methods to approximate f(x), show that

[3 Marks]

$$\int_{a}^{b} f(x) \approx \frac{b-a}{2} [f(b) + f(a)]$$

Using a second-order Lagrange interpolating polynomial to approximate f(x), show that the Simpson's $\frac{1}{3}$ quadrature rule over an interval [a,b] is given by,

[5 marks]

$$\int_a^b f(x) \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{b+a}{2}\right) + f(b) \right]$$

Use well-labelled diagrams to geometrically describe the quadrature rules: trapezoidal rule: $l \approx \frac{b-a}{2} [f(b)+f(a)]$; rectangular rules $l \approx (b-a)f(a)$, $l \approx (b-a)f(b)$; midpoint rule $l \approx (b-a)f(\frac{a+b}{2})$. Hint: Superimpose all diagrams in a single figure and state in no more than two sentences how each rule relates with the respective diagram. [2 Marks]

QUESTION #2

a) Define the interpolation problem.

[5 Marks]

b) Using Lagrange Basis, determine an approximate function,

[5 Marks]

$$p(x) = \sum_{i=1}^{n} a_i L_i(x) = \sum_{i=1}^{n} a_i \prod_{\substack{j=1 \ i \neq i}}^{n} \frac{x - x_j}{x_i - x_j},$$

that interpolates the following data points,

QUESTION #3

- a) With the aid of diagrams, clearly compare and contrast between the following numerical methods: Bisection Method, Newton-Raphson method, Regula-Falsi Method, and Secant Method.

 [4 Marks]
- b) Suppose that matrix A can be reduced to row-echelon form using Naïve Gaussian elimination. Show that matrix A has a unique LU decomposition given by,

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ l_{21} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{pmatrix}$$

where l_{21} is the multiplier in Naïve Gaussian elimination process and U is the row-echelon form of matrix A. [6 Marks]

QUESTION #4

- a) Briefly explain a relative advantage of using the Newton basis over the basic Lagrange basis in constructing an interpolating polynomial. *Hint: The respective bases are given in question #1 and #2 respectively* . [4 Marks]
- b) The line y = 3x intersects the curve $y = -\ln x + e^x$ at point $x = \alpha$. Use Newton-Raphson method to determine approximate value of α . Let the initial approximate be $x_1 = 2.0$. Clearly show your workings for only the first iteration and clearly state the combined stopping conditions used in your solution. Take error tolerances of 0.05.

QUESTION #5

a) Clearly explain two reasons why algebraic polynomials are particularly useful for approximating functions.

[2 Marks]

i) Using geometry methods to approximate f(x), show that

[3 Marks]

$$\int_a^b f(x) \approx \frac{b-a}{2} [f(b) + f(a)]$$

ii) Using a second-order Lagrange interpolating polynomial to approximate f(x), show that the Simpson's $\frac{1}{3}$ quadrature rule over an interval [a,b] is given by,

[5 marks]

$$\int_{a}^{b} f(x) \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{b+a}{2}\right) + f(b) \right]$$

QUESTION #6

- a) Let L, U be a unit-diagonal lower-triangular matrix, and an upper-triangular matrix respectively. Let $A = \begin{pmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{pmatrix}$. Use method of LU factorization without pivoting to obtain the LU decomposition for the given A-matrix. [4 Marks]
- b) Use LU factorization to obtain the solution to $\begin{pmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{pmatrix} x = \begin{pmatrix} 20 \\ 5 \\ 1 \end{pmatrix}$ [6 Marks]

QUESTION #7

a) Differentiate between Newton-Cotes quadrature rules and Gaussian quadrature rules.

[2 Marks]

- b) Given any 3×3 matrix A,
 - Show that A admits (D + L + U) decomposition where D, L, and U denote the diagonal, unit-diagonal lower-triangular and upper-triangular matrix respectively.
 - Show that the Jacobi method for a system of linear equations, $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} x = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ is given by,

$$x^{k+1} = -D^{-1}Rx^k + D^{-1}b = -D^{-1}(L + U)x^k + D^{-1}b$$

where D, L, and U are as defined in (i).

[5 Marks]